

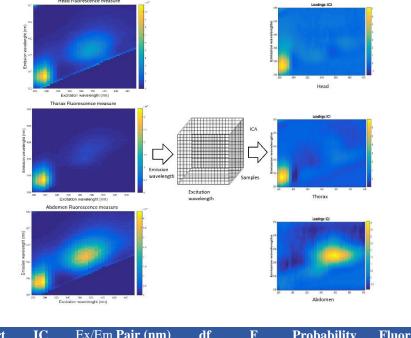
New ultra-rapid detection of pesticides in honeybee

¹ Alberto RODRÍGUEZ-IZQUIERDO, ¹ Nathalie LOCQUET, ² Roberto GARCIA, ¹ and

Christophe B. Y. CORDELLA*

¹UMR 914 AgroParisTech/INRA (Université Paris-Saclay). 16 Rue Claude Bernard 75005 Paris (France) ²UMR 1145 AgroParisTech/INRA (Université Paris-Saclay). 16 Rue Claude Bernard 75005 Paris (France) * Corresponding author : christophe.cordella@agroparistech.fr

Introduction


The development of 3D-Fluorescence Spectroscopy to follow biological fluorophores into honeybees allows for detecting variations in honeybees' metabolism linked to pesticide exposure, in combination with the Independent Component Analysis, which used as a means of source signals extraction from raw spectra.

Materials and Methods

6 boxes of 40 honeybees/box with pesticide and 6 others without pesticide. Fluoromax-4 Spectrofluorimeter (Spex-Jobin Yvon, Longjumeau, France) for fluorescence analysis and Matlab environment to perform the ICA and ANOVA analyses onto the ICA scores.

Results and Discussion

Figure and Table 1: Description of the Independent Component Analysis and ANOVA results of some of the fluorophores detected, with their identification.

Body Part	IC	Ex/Em Pair (nm)	df	F	Probability	Fluorophore
Head	IC2	280/340	17	9,62	0,0069*	Trp-Protein ¹
Thorax	IC2	280/340	17	5,66	0,0302*	Trp-Protein ¹
Abdomen	IC3	330/440	17	16,53	0,0009*	NADH ³

The variation in ICA signals' proportions of these fluorophores shows the presence of pesticide, the response to stress and detoxification process in the honeybee².

Conclusion

The variation between main fluorophores of the honeybee metabolism shows that the presence of pesticide can be detected with the Front-Face Fluorescence Spectroscopy. The stress response modelling makes it possible to have a more general idea of the detoxication response to stress in a very fast way.

Bibliography

¹J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd, Springer US, Boston, MA, 2006.

² N. Even et all., General Stress Responses in the Honey Bee , Insects. 2012, (3), 1271–1298.

³M. Yoshimura et all., Prediction of Aerobic Plate Count on Beef Surface Using Fluorescence Fingerprint, Food Bioprocess Technol., 2014, (7), 1496–1504.