

Solid state fluorescence of push-pull distyrylbenzenes

¹Michal HRABAL, ¹Matouš KRATOCHVÍL, ²Aleš IMRAMOVSKÝ, ²Karel PAUK, ²Stanislav LUŇÁK jr, ¹Martin VALA. ¹Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic. ²Faculty of Chemical Technology, University of Pardubice, Studentská 95, 530 09 Pardubice, Czech Republic

Introduction

It is known that majority of materials based on organic conjugated molecules that exhibit efficient solid-state fluorescence (SSF) emit in blue/green region. The goal of this work was to study an influence of different substituents on optical properties with focus on SSF in the red region. A series of potential fluorophores based on bulky diphenyl-distyrylbenzene (DP-DSB) core substituted with diphenylamine (DPA) as electron donor and various electron acceptor moieties with variable electron-withdrawing strength was synthesized and their fluorescence was characterized.

Materials and Methods

A series of prepared fluorophores is shown in (Figure 1). Their absorption and fluorescence was studied in solvents with various dielectric constants and in solid state. Fluorescence life-times were measured using TCSPC method.

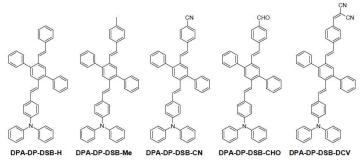


Figure 1 The studied DPA-DP-DSB derivatives.

Results and Discussion

All five compounds show a remarkable solid-state fluorescence covering the range from blue over green to red. Strong electron-acceptor moieties can shift the emission toward longer wavelegnths as can be seen in (Figure 2). The bulky diphenyl-distyrylbnzene core prevented the fluorescence quenching in solid state.

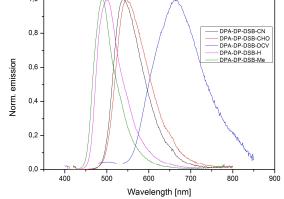


Figure 2 Solid state fluorescence spectra of the studied derivatives.

Acknowledgement

This work was supported by Czech Science Foundation via project No. GA 17-21105S, research infrastructure was supported by project MŠMT No. LO1211. from the National Programme for Sustainability I (MEYS CR)