

Enhancement of near infrared upconversion in LuNbO₄:Yb³⁺,Tm³⁺ with Ga³⁺ and Ta⁵⁺ substitutions

Min Hyuk Im, Young Jin Kim

Department of Advanced Materials Engineering, Kyonggi University, Suwon 16227, Korea

 Yb^{3+} and Tm^{3+} co-doped upconversion (UC) phosphors typically exhibit near infrared (NIR) emissions and have attracted great attention because of the advantages for bio-applications^{1,2}. In this study, we investigated the UC luminescence of LuNbO₄:Yb³⁺,Tm³⁺ with Ga³⁺ and Ta⁵⁺ substitutions. Under 980 nm excitation, the UC spectra of LuNbO₄:Yb³⁺,Tm³⁺ predominantly exhibited NIR emission bands at approximately 805 nm, whereas other UC emissions including a greenish-blue emission were insignificant. The UC emissions originated from Tm³⁺ via an energy transfer from Yb³⁺ to Tm³⁺. A two-photon process was responsible for the NIR UC emission. Ga³⁺ and Ta⁵⁺ ions were substituted for Lu³⁺ and Nb⁵⁺ ions, respectively, resulting in the enhancement of the NIR UC emissions. These findings were explained using the modification of the local crystal structure and the crystal field asymmetry surrounding the Tm³⁺ ions. The results demonstrated that (Lu,Ga)(Nb,Ta)O₄:Yb³⁺,Tm³⁺ has a high potential for NIR UC phosphors.

Figure 1: UC spectra of LuNbO₄:Yb³⁺,Tm³⁺.

Bibliography

¹ M. Nyk, *et al.*, High Contrast in Vitro and in Vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Upconversion in Tm³⁺ and Yb³⁺ Doped Fluoride Nanophosphors. Nano Lett., 2008, 8, 3834–3838.

² X. Chen, *et al.*, Intense Infrared Upconversion Luminescence of NaGdF4:Yb/Tm with Controlled Intensity. J. Appl. Phys., 2017, 121, 163103.